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Abstract

A new result presented in this paper is the evaluation of the Hashin—Shtrikman bounds for composites composed of
arbitrarily anisotropic constituents. To date, evaluation of the Hashin—Shtrikman bounds are limited to composites
with isotropic constituents or to polycrystalline composites with specific crystal symmetries. The generality of the exact
result presented herein is achieved through a reinterpretation of Kroner’s (J. Mech. Phys. Solids 25 (1977) 137) recursive
relations for nth-order bounds and the optimal zeroth-order (n = 0) bound. The definitions of optimal zeroth-order
bounds are extended to all even-ordered tensors and procedures are presented to evaluate these bounds for all second-
and fourth-order tensors. While optimal zeroth-order bounds are not new, the ability to calculate them for fourth-order
tensors of arbitrary symmetry is new. Utilizing the zeroth-order bounds, material anisotropy parameters are defined
which quantify the extent of anisotropy for even-ordered tensors. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Bounds are of interest in both experimental and theoretical work as a tool for validating or invalidating
data and theory. In the field of effective properties of composite materials two orders of bounds are widely
utilized: the first-order bounds, which are more commonly referred to as the Voigt/Reuss bounds (Voigt,
1928; Reuss, 1929; Hill, 1952; Paul, 1960; Milton and Kohn, 1988), and second-order bounds, which are
more commonly known as Hashin—Shtrikman bounds (Hashin and Shtrikman, 1962a,b,c, 1963; Milton
and Kohn, 1988; Kroner, 1977). To date, explicit expressions in the literature for the Hashin—Shtrikman
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bounds are limited to composites consisting of an arbitrary number of isotropic constituents (Hashin and
Shtrikman, 1963). For polycrystals with specific crystal symmetry (Watt and Peselnick, 1980) have pre-
scribed procedures for evaluating the Hashin—Shtrikman bounds on the effective elastic properties.
For more general material symmetry the procedures presented in this paper are required to evaluate the
Hashin—Shtrikman bounds.

This capability is achieved through a reinterpretation of Kroner’s (1977) nth-order bounds. Kroner
presents recursive expressions for the evaluation of nth-order bounds on the effective elastic moduli
for macroscopically homogeneous and isotropic composites in terms of the bounds of order n — 2 for n > 2.
A bound of nth order assumes homogeneity and isotropy of the correlation functions describing the spatial
distribution of the constituents up to and including order n. Thus, every time Kroner’s recursive relation
is utilized to yield nth-order bounds from the n — 2 order bounds there is the implied assumption of ho-
mogeneity and isotropy of the n and n — 1 correlation functions. To evaluate these nth-order bounds, two
“seeds” are required to initiate the recursive relations. These seeds are the zeroth- and first-order bounds.
The odd-order bounds can be calculated from the first-order (n = 1) Voigt/Reuss bounds. The calculation
of the even-order bounds (which include the Hashin—Shtrikman » = 2 bounds) require the zeroth-order
(n = 0) bounds. In this paper we specifically address what are zeroth-order bounds and how to calculate
them. While zeroth-order bounds are not new, the ability to evaluate them for fourth-order tensors of
arbitrary symmetry is new.

Zeroth-order bounds are not novel. Optimal zeroth-order bounds have been previously defined and
evaluated for a stiffness tensor with cubic material symmetry (Kroner, 1977). For the cubic (and thus
isotropic) material symmetry group, the calculation of the optimal zeroth-order bounds is trivial. However,
for more general classes of material symmetry it has been unknown how to evaluate these optimal zeroth-
order bounds for fourth-order tensors.

Procedures are presented herein for calculating zeroth-order bounds for second- and fourth-order ten-
sors. The ability to calculate these bounds for individual constituents of arbitrary anisotropy is novel and is
significant for at least the following three reasons. First, zeroth-order bounds are rigorous bounds. Second,
they permit calculation of all higher-order even-ordered bounds, including the Hashin—Shtrikman bounds,
(see Section 6) for an arbitrary composite so long as it is macroscopically homogeneous and macroscopi-
cally isotropic. That is the constituents of the composite can be of arbitrary anisotropy. Third, they provide
a means by which we quantify the extent of a material’s anisotropy (see Section 8).

This paper is outlined as follows. In Section 2 the necessary mathematical notation is presented. The
notation is fairly general to accommodate the definition of optimal zeroth-order bounds for all even-
ordered tensors given in Section 3. Also presented in Section 3 are five theorems which are proven in
Appendix A. The purpose for this formal presentation is to simplify the derivation of results in the re-
mainder of the paper. Section 3 concludes with Kroner’s definition of an optimal zeroth-order bound —
which is only applicable to fourth-order tensors with no less than cubic symmetry. Sections 4 and 5 present
derivations for the evaluation of the optimal zeroth-order bounds for second- and fourth-order tensors,
respectively. These optimal zeroth-order bounds serve as the even ““seed” for the recursive relations pre-
sented in Section 6 for the nth-order bounds. The odd “seed” is the Voigt/Reuss bound. In particular,
Kroner’s nth-order bounds are reinterpreted and presented in terms of Wu’s tensor. These results are
presented for both second- and fourth-order tensors. In Section 7 an example is presented which evaluates
the bounds for n =0,1,2 and oo for a graphite uranium dioxide composite using the methodology
presented in Sections 5 and 6. Section 8 utilizes the optimal zeroth-order bounds to define anisotropy
parameters to quantify the extent of anisotropy of a tensor. There is a single anisotropy parameter for
second-order tensors and, in general, three anisotropy parameters for a fourth-order tensor. However, since
our particular application to fourth-order tensors is the elastic modulus, the number of non-trivial an-
isotropy parameters is two — the minor symmetries of the elastic stiffness result in the third anisotropy
parameter being zero implying perfect isotropy. Summary remarks are made in Section 9.
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2. Preliminaries

Let 7™ denote the set of order m tensors. Let U € 7" and ¥V € ™" where m,n > 1 are not, in general,
equal. We now define the following contraction operations:

UV =U i Vi juiy @ Qe Qe Q- --Qe, (1)

U:V= Ull dn—2k1ky V}‘lkz./'Swjm ¢, e, ,Qe, e, (2)

Ukl---kn Vl(l"'kﬂjll+l"‘jm e./n+1 ® T ® e/m lf n < m7
U- V=1 U,V if n=m, 3)

Ui iokiodon Vigdn €5, @ - @€ if m>m,

/*211

The transpose of a tensor T € 7> is a tensor T” € 7> defined by

w-T-v=v-T' -w VYvwecT" (4)
or, in component form, T”T i 11 g = Doy The symmetric and skew-symmetric operators are defined as

T° :=1(T+T") and T* :=1(T — T"), respectively. Let 75" and 73" denote the sets of symmetric and
skew-symmetric order 2n tensors, respectively.

For T e g ”4” (note that T" = T) with components T}
following operators.

with respect to the basis {e;} we define the

1---ldn

T = 2 Tzl.uz,,znﬂu.zz,,zzn“ ...... igy + ZH]..JZ,,II..J,,IZ”H ...... igy el] ® ® 814,,7 5

T = %(T}I---i»rin+]---i2»yi2n+l ------ ign Eﬂ+]---i2nil---ini2nAl ------ i4n) Q- Q Ciys (6)
which yield the symmetric and skew-symmetric parts of T with respect to the first 2z indices. Since T = T,
these operators also yield the symmetric and skew-symmetric parts of T with respect to the last 2z indices.

The trace operator tr appliedto T € 2 with components 7}, ;, with respect to a basis {e;} is defined as
trT =T, . iy which is an invariant. When applied to a second-order tensor u € 72 and a fourth-order
tensor U € 7, the trace operator yields the standard results: tru = u; and tr U = Uijij-

For t € 7% we define the spherical and deviatoric operators, respectively, as 7 := H(tre)i and
t .= ¢t — "' where i is the second-order identity tensor.

We now define the operation II,[T] which yields a new tensor as a result of transforming the body on
which the tensor T is defined according to the tensor ¢ € (0 where (O is the set of second-order orthogonal
tensors. For T € 9", with components 7; with respect to the basis {e;}, the operation IT,[T] yields

Vi

IL[T) := O[Ty, e ®e, @ Re, (7)
where

1y[Tyiy i) 2= Girjy Ginjs - - - Qinn T (8)

The volume average of a tensor T(x) € " will be denoted by (T).

For fourth-order identity tensors we have the following definitions:
I = 5[k5j/e[®ej®ek®el, (9)

Is =1 —%(5,;(51+5,15]k)e,®ej®ek®e1, (10)

I' =1 = (040, — 0y dp)eRe; @ e Ve, ()
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ISph = %5ii5k1ei®3j®ek®eh (12)
Idev = (5[;{5],—%5[j5k1)ei®ej®ek®e,, (13)
Idev,s — Idev IP=I: Idev S S Isph, (14)

where §;; is the Kronecker delta.
The nth-order bounds on T are expressed as
T <T<T", (15)
where, for example, T < T implies that
x (T-T")-x<0 VxeJ". (16)
In the remaining sections bounds on effective second- and fourth-order properties of a composite are
presented. In this regard we make use of the following notation. Let k* € .7, where 7 is the set of positive
definite, symmetric second-order tensors and C* € J ¢ where 7 ¢ is the set of positive definite, fourth-order
tensors with both major and minor symmetries, denote effective properties to be bounded on the domain
2 C K. The constitutive relation k(C) on £ is assumed to be piecewise homogeneous thus permitting a

partition of % denoted by {%,} s.t. kK" := k|%, (C" := C|%,) is homogeneous. The ratio of the volume of %,
to the total volume of Z is given by the rth phase volume fraction c,.

3. Optimal zeroth-order bounds

In this section we define a zeroth-order bound to a tensor T € 7" which is based on the relation (16).
Since x - T -x = x - (T%) - x it follows that a zeroth-order bound to a tensor T® is a zeroth-order bound to
the tensor 7. As a result — without any loss in generality — we shall only consider the zeroth-order bounds of
a tensor T € 73", where 7¢" is the set of all symmetric (in the sense 77 = T) tensors.

A tensor A € 7¢" is a zeroth-order upper bound to T € 73" if

x-(I,[T]—A4) x<0 VxeJ" and Vqe 0" (17)
or, equivalently, if
x-(T—-1,]A4]) x<0 VxeJ" and Vg€ 0, (18)

where 0" is the set of proper orthogonal, second-order tensors.
Let .«7* denote the set of all zeroth-order upper bounds to T € .7 3". The optimal zeroth-order upper
bound, denoted by T°%, to a tensor T € 7 é” is the element of ./ such that

x-(T""—A4)-x<0 VxecJ" and VA € o/". (19)

Since all proper orthogonal transformations of 4 are also upper bounds (see Eq. (18)), we can rewrite
Eq. (19) as

x-(T% —TI,[4]) - x<0 VxeJ" VAe.o and Vge O (20)
or, equivalently, as
x- (M[T"] - A4) - x<0 Vx€J" VAc /" and Vqe 0. (21)

In a similar manner the lower bound may be defined by replacing < with > and .o/* with o/~ in Egs.
(17)—(21), where .o/~ is the set of all zeroth-order lower bounds to 7.
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In order to simplify the presentation of Sections 4 and 5 we state here the following six theorems whose
proofs are provided in Appendix A. The first theorem states that the optimal zeroth-order bounds for a
tensor T € I é” are isotropic. The special case of a fourth-order tensor 7 € 7 ¢ has been previously proven
(Kroner, 1977, Section 4).

Theorem 1. The optimal zeroth-order bounds T, T~ € T é”, to a tensor T € T ﬁ”, are isotropic.

The second and third theorems state properties of the maximum and minimum eigenvalues of the dif-
ferences T — T°" and T — T°, respectively.

Theorem 2. For T, Tt ¢ 7 é”, T being the optimal zeroth-order upper bound to T, the largest eigenvalue of
the difference T — T° is zero.

Theorem 3. For T, T~ € T é”, T°" being the optimal zeroth-order lower bound to T, the smallest eigenvalue of
the difference T — T is zero.

The remaining three theorems are elementary but they are presented in this formal manner to ease the
presentation in the following sections. The fourth and fifth theorems are beneficial for the evaluation of
optimal zeroth-order bounds. They decompose the equation x-A4-x< (> )0 into a set of uncoupled
equations.

Theorem 4. For A € 7", the expression x-A-x< (=)0, Vx € T holds iff x - A" -x<(=)0,Vxc TV
andx- A" - x< (=)0, Vxe€ T

Theorem 5. For A € 9_2 with a spherical eigentensor, the expression x : A : x < (=)0, Vx € 72, holds iff
XA xP < (2)0,Vx € T2, and x* i A x* < (=)0, Vx € T

The final theorem relates the traces of two 2n-order tensors given that the difference of the two tensors is,
say, negative semi-definite.
Theorem 6. For A,Bc 7%, x - (A—B) -x<0, Vx € 7" implies that tr A <tr B.

In the remainder of this section Knoner’s definition of an optimal zeroth-order bound is presented. As
will be seen, it is a complete definition only for fourth-order tensors with a spherical eigentensor. The
definitions given above are valid for all even ordered tensors regardless of material symmetry.

3.1. Kroner’s definition

Let T € 7 where J ¢ is the set of positive definite, fourth-order tensors with the symmetries
Tii = Tijs = Tiyy = Tiy. Kromer (1977, Section 4) defines the optimal zeroth-order upper bound — char-
acterized by the two components 7))}, and Ty, — to the tensor T by T{}, and T35, being the maximum
values attained by 7j;;; and T»35; as T undergoes an arbitrary coordinate transformation. In other words,
letting 7}y, = I1,[T;u] for q € 0" the optimal upper bound, as defined by Kroner, is given by

0+ _ q 0+ _ q
Ty = max Ty, Ty3py = max T3 (22)
qel qel

Certainly, it must be true that

0+ q 0+ q
Ty = max Ty, T3 = max Toy,;, (23)
geu™ qev



7950 J.C. Nadeau, M. Ferrari | International Journal of Solids and Structures 38 (2001) 7945-7965

however, it is not obvious that Eq. (22) is sufficient to ensure that T°" is an upper bound, i.e., that Eq. (18)
holds with 4 = T°". Kréner does not provide a proof of sufficiency.

It can be shown that if T possesses a spherical eigentensor then Eq. (22) is sufficient for determining the
optimal upper bound. Recall that if T has cubic or isotropic symmetry then T has a spherical eigentensor.
For more general classes of symmetry, however, the sufficiency of Eq. (22) is not known.

4. Calculation of second-order optimal bounds

Let te€ 7 é be a tensor for which optimal zeroth-order bounds are to be calculated. Let (/;,v;),
i € {1,2,3}, denote the three eigenvalue—eigentensor pairs of the tensor ¢ and define A, := max; /; and
Jmin := min; 4;. From Theorem 1 the upper and lower optimal bounds of ¢, > and #°~, are isotropic. Thus,
the optimal bounds may be represented in the form ** = i and *~ = °~i where £, =~ € R.
Consider the eigenanalysis of ¢ — °*:

[t — (J; + )iy, = 0, (24)

where (), i € {1,2,3} are the three eigenvalue—eigentensor pairs of the difference # — 1%, It is easily
shown that (4; + ", %) = (4,;), thus, 2 = 2 — 1**. Taking the max of both sides gives Amax = Amax — 1.
From Theorem 2 the largest eigenvalue of ¢t — t** is zero; that is, Ay, = 0. Thus,

7 = Jmax := {largest eigenvalue of t}. (25)
Similarly, using Theorem 3, it can be deduced that

0

17 = Amin := {smallest eigenvalue of t}. (26)

Since optimal zeroth-order bounds are isotropic (Theorem 1), the zeroth-order bounds for a composite
are the two isotropic tensors which optimally bound the set of zeroth-order bounds of the constituents. By
“optimally bound” it is meant that there do not exist other isotropic tensors which provide a better, or
“tighter”’, zeroth-order bound. Therefore, the upper and lower zeroth-order bounds for a composite system
are given by k°" = k°"i and k°~ = k°~ i where

r
max

£t := max A £ :=min /"
r r

“min

(27)

and 7, and A

“min

denote the maximum and minimum eigenvalues of &, respectively.

5. Calculation of fourth-order optimal bounds

Let T € 7§ be a tensor for which optimal zeroth-order bounds are to be calculated. From Theorem 1
the upper and lower optimal bounds of T: T°" and T°, are isotropic and may, thus, take the form

T0+ — 3KO+Isph =+ 2[10+Ide‘/‘s 4 2’70+Ia7 (28)

TO— _ 3K0715ph + 2#0—Idev,s 4 2’70712\’ (29)

where %, 10, 7% 10, 10, 10 € R,

We provide proofs for the evaluation of the upper bound exclusively. The evaluation of the lower bound
proceeds in a similar manner and will not be presented below. However, final results for 7°~ will be pre-
sented.

Restricting attention to fourth-order tensors when applying Theorem 4 to Eq. (18) with 4 = T°", and
noting that T°" is isotropic, yields the uncoupled conditions
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x: [T —(T°)]:x<0 VYxec T, (30)

x: [T9— (T°)]:x<0 VYxe 73, (31)

where (T°7)° = 3k I'P" 4+ 24041 and (T°")" = 2;°*I*. Theorem 2 applies to the expression within
brackets for both Egs. (30) and (31).

5.1. Calculation of n’*

We proceed to evaluate (T°"). Let (4;,v;), i € {1,2,3}, denote the three eigenvalue—eigentensor pairs of
the tensor of T¢, where A, € Rand v, € T i. Define Apax := max; A; and Ay, := min; 4;. We now consider the
eigenanalysis of 7% — (T°")* which takes the form

[T — (J; + 20" : v = 0. (32)

The solution of Eq. (32) is (Z; +21°%, %) = (A, ;). Thus, 4; = J; — 2°*. Taking the max of both sides gives
Jmmax = Amax — 21°F. From Theorem 2 the largest eigenvalue of T — (T 0*)“ is zero. Thus, Ayn.x = 0 which
leads to

20" = Amax := {largest eigenvalue of T“}. (33)
Proceeding in a similar manner for the optimal lower bound yields
21" = Amin := {smallest eigenvalue of T°}. (34)

If T has both minor diagonal symmetries, i.e., T° = 0, then 4" = 5’ = 0.

5.2. Calculation of k' and p’*

We now address the evaluation of (T°")". Let (4, v,), i € {1,2,...,6} denote the six eigenvalue—eigen-
tensor pairs of the tensor of T° where 4; € R and v, € § Define An. ;= max; 4; and Ay, := min; A;.
Consider the eigenproblem

[T — (T — 4, IF] : % =0, (35)
whose solutions are given by the eigenvalue—eigentensor pairs (/;, ;) for i € {1,2,...,6}.
The tensor (T°%)® is isotropic thus
(T e of :={A | A=al™ + B, o pc R} (36)

To further restrict the set .7 of possible optimal upper bounds, take 4 € .7 and consider the eigenproblem
of T° — A which takes the form

[T° — ol™ — J;(a)IF] : %,(2) = 0, (37)

where A(x) := A(a, f) + f is an eigenvalue of T° — af*™" and (a, f§) is an eigenvalue of 7° — A. The beauty
of Eq. (37) is that it is not a function of ! From Theorem 2 it is necessary that the maximum eigenvalue of
T* — A be zero (i.e., Amax (%, f) = 0) in order for A4 to be an upper bound and more specifically a potential
optimal upper bound. In other words, if A (%, f) # 0 then 4 # (T°7)’.

The requirement that Ay (o, f) = 0 allows us to calculate . Choose o € R. The eigenproblem (37) can
then be solved for the eigenvalues /;(«) where i € {1,2,...,6}. Taking the max of both sides of the defi-
nition for 4;(a) gives

Dmax () = Jomax (o1, ) + B. (38)
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After substituting Amax (2, f) = 0, one obtains

B = Jmax(®) := {largest eigenvalue of T* — aI*™, o c R}. (39)
We now have that

(T € o = {A | A = al"™ + Jpo (W)I°, o« € R}. (40)

It remains to determine which value of « € R yields the optimal upper bound from the set .«7’. From
Theorem 6 it is concluded that the optimal upper bound is that element of .7’ which has the minimum
trace. Here is the proof. Every A’ € .o/ is a zeroth-order upper bound to T° with the maximum eigenvalue
of T* — A’ equal to zero. By the definition of the optimal zeroth-order upper bound and Theorem 6, it
follows that for any A’ € .7’ for which there exists a B' € .o/’ s.t. tr B’ < tr A’ that A" # (T°")’. Since .+’ is
a set parameterized by a single scalar variable — namely, o — it follows that the optimal zeroth-order upper
bound is the element of ./’ with the smallest trace.

Letting
7 (o) = tr (™ + )tmax(oc) r) (41)
T1(0t) = 00+ 6 Amax () (42)

and defining oy, to be the value of o which minimizes the function 7,(«): 71 (otmin) = Minyes 71 (), the
optimal zeroth-order upper bound is given by (T°")" = otin I'™ + Amax (0min) I° 0T, equivalently, by

210t = ):max(ocmin) := {largest eigenvalue of T* — o I}, (43)
3K0+ = Omin + /{max(amin)- (44)
Proceeding in a similar manner for the optimal zeroth-order lower bound yields
210 = jmm(ocmax) := {smallest eigenvalue of 7% — ocmaxISph}, (45)
3K07 = Omax T j:min(amax)y (46)
where o, 1S the value of o which maximizes the function
(o) := tr (@™ + Jppin (2) IF) (47)
(o) = 0 4 6 Jnin (01). (48)

That is, 72(0tmax) = MaX,eq T2(a).
5.3. Special Case: spherical eigentensor

The evaluation of (T°")" with its two parameters is not difficult if 7° has a specific form — a form such
that it has a spherical eigentensor Ay, i. Restricting attention to fourth-order tensors in applying Theorem 5
to Eq. (18) with T = T* and 4 = (T°")’, and noting that (T°")" is isotropic and thus has a spherical ei-
gentensor, yields the uncoupled conditions

xsph . [Ts _ (T0+)S] . xsph < 0 Vxec f2, (49)
xdev . [Ts N (T0+)S] . ydev <0 VYxe T2, (50)

Theorem 2 applies to the expression within brackets of both Egs. (49) and (50).
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Since T° has a spherical eigentensor it follows that v; = v;, for i € {1,2,...,6}, are eigentensors of the
difference T° — (T°")". Let /sph denote the eigenvalue of the spherical eigenmode i of T°. That is,
Je{l,2,...,6} s.t. v;xi. Let (}:[,fi,-), for i € {1,2,...,5}, denote the five non-spherical eigenvalue—
eigentensor pairs of (/;,v;). For the isotropic tensor (T°")* recall that 3x°* is the spherical eigenvalue and
that 24" is an eigenvalue of multiplicity five corresponding to the five non-spherical eigentensors.

We now consider Eq. (49) by substituting »; = i oc x”" into Eq. (35) to yield

(A — 36 — 2)i = 0. (51)
Therefore /4 = Jgn — 3x"*. From Theorem 2 it is concluded that Z = 0 and thus
3k = Agn := {spherical eigenvalue of T*}. (52)

We now consider the remaining Eq. (50) by substituting v; = ¥; into Eq. (35) to yield Ji = )1,—_— 2u0F.
Taking the max of both sides gives Am., = max; 4; — 2u’*. From Theorem 2 it is concluded that Ay, =0
and thus

24** = max /; = {largest non-spherical eigenvalue of 7°}. (53)

Proceeding in a similar manner for the optimal zeroth-order lower bound yields

3k = Agn := {spherical eigenvalue of T*} (54)
—_ 3K0+ (55)
24"~ = min /; = {smallest non-spherical eigenvalue of T°}. (56)

Isotropic or cubic symmetry of 7 is sufficient to ensure a spherical eigentensor. When T* is isotropic, say
of the form T¢ = 3xI*™" 4 2u0%"*, then k° = k* =k and p*" = u* = p. When T° has cubic symmetry
then k" = k" =1 (Ty111 + 2T122), 1" = max{Dra3, 1 (111 — Thize)} and p®~ = min{ Doz, (11111 — Tz }-

5.4. Composite system

Again, since optimal zeroth-order bounds are isotropic the zeroth-order bounds for a composite are the
two isotropic tensors which optimally bound the set of zeroth-order bounds of the constituents. Note that
for two isotropic fourth-order tensors: A4 = 3x, I'™ + 24, I°** and B = 3r I'™ + 2, 1°'*, that A < B iff
(1) k4 < kp and (i) u, < . Thus, the upper and lower zeroth-order bounds for a composite system are given
by

C0+ _ 3K0+ Isph 4 2/,t0+ Idev,s7 (57)

C07 _ 3K0_ Isph 4 2'u0— Idev,s, (58)
where

K= max Kot WOt = max 1o, (59)

K7 i=mink)”  p" :=ming)" (60)

and k%" and " (u°" and u¥") are the upper and lower zeroth-order bounds, respectively, of the bulk
(shear) modulus for arbitrarily anisotropic C". Note that C** and C°~ are not necessarily elements of the set
of constituent zeroth-order bounds {(C")"*, (C")*"}.
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6. nth order bounds

Kroner (1977) presents expressions for the nth-order bounds in terms of the bounds of order n — 2. In
obtaining bounds of order #n from the bounds of order n — 2 it is assumed that the correlation functions of
order n and n — 1 are homogeneous and isotropic. The bounds of order n — 2 have already assumed ho-
mogeneity and isotropy of the correlation functions up to and including order » — 2. Kroner’s expressions
are manipulated algebraically to yield tensorial expressions similar to the T (i.e., Wu’s tensor) and W
tensors (Benveniste, 1986) where the shape of the inclusions happen to be spherical. These results are
presented below.

The evaluation of the following expressions are easily performed after mapping the tensorial expressions
to equivalent matrical expressions (Nadeau and Ferrari, 1998). These mappings, however, are not trivial.

6.1. Second-order tensors

The nth-order bounds (n > 2) are given recursively by

K= (ke ) ), (61)
-1
K= [low, o) wa) '] (62)
where
tri=[i+p, . (k— k20 (63)
W= [i+ 4,0 (p—p" )], (64)
Py =e (k") = gp2, (65)
g, 2= (") i—e)=k" (i—e), (66)

and where e := (1/3)i. Note that (1/3)i also happens to be the second-order Eshelby tensor (Hatta and
Taya, 1985) for a spherical inclusion. The tensors k°" and k°~ are the zeroth-order upper and lower bounds
on k" for the composite (see Section 4). Note that k and p (and, thus, #(,_») and w(,_»)) are the only spatially
variable quantities in Egs. (61)-(66).

6.2. Fourth-order tensors

The nth-order bounds (n > 2) are given by

C" =(C:T,,): (T, (67)

=i Wy (68)
where

T, y:=[F+P,,: (C—C" )] (69)

Wypi=[I'+0Q,,:(S—8"2)]", (70)
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P, s:=E, 5 : (C" ) =E, 5, : 8", (71)

Q, = (") (P —Epa)=C" Y (P = Eua.), (72)

and where C"2* and C"~?~ are the upper and lower bounds of order (n — 2) on C* for the composite and
E(,_ 5 and E(,_,_ are equivalent to the fourth-order Eshelby tensors (Eshelby, 1957; Mura, 1987) for a
spherical inclusion in an isotropic matrix of constitution C"~?* and C"~?~, respectively.

6.3. Hashin—Shtrikman bounds

Bounds of second-order for macroscopically homogeneous and isotropic effective properties are more
commonly known as Hashin—Shtrikman bounds and they were arrived at by variational or minimum
energy methods. These bounds are explicitly a function of the constitutive relations and volume fractions of
the individual phases but they are also implicitly a function of the microstructure. Second-order bounds
assume homogeneity and isotropy of the correlation functions up to and including order n = 2. If only
constitutive relations and phase volume fractions are known then the appropriate bounds are of order
n = 1. Despite statements to the contrary in the literature second-order bounds rely on additional micro-
structural information, namely, the homogeneity and isotropy of the correlation function of order n = 2.

6.3.1. Second-order tensors

The Hashin—Shtrikman bounds (Hashin and Shtrikman, 1962b; Milton and Kohn, 1988), given by Egs.
(61)—(66) when n = 2, are valid, and capable of evaluation, for arbitrary material constitution and number
of constituents — so long as the effective properties are macroscopically homogeneous and isotropic. This is
in distinction to expressions in the literature for Hashin—Shtrikman bounds which are limited to isotropic
constituents for multi-constituent composites (Hashin and Shtrikman, 1962b).

It is of interest to note that under certain circumstances equivalence may be found between the Hatta—
Taya effective property predictions (Hatta and Taya, 1985; Nadeau and Ferrari, 1995) and the Hashin-
Shtrikman bounds. When a bi-constituent composite in the form of an isotropic matrix reinforced with
spherical fibers which have a uniform ODF and the matrix material constitution, in addition to being
isotropic, is an optimal zeroth-order bound of the composite then the prediction of Hatta—Taya corre-
sponds to one of the two Hashin—Shtrikman bounds. In particular, if & = k" then the Hatta—Taya ap-
proximation is equivalent to the Hashin—Shtrikman upper bound and if k™ = k"~ then the Hatta—Taya
approximation is equivalent to the Hashin—Shtrikman lower bound. This correspondence has been pre-
viously observed (Benveniste, 1986) for multi-phase composites with isotropic constituents.

6.3.2. Fourth-order tensors

The Hashin—Shtrikman bounds (Hashin and Shtrikman, 1962a,c, 1963), given by Eqgs. (67)—(72) when
n = 2, are valid, and capable of evaluation, for arbitrary material constitution and number of constituents —
so long as the effective properties are macroscopically homogeneous and isotropic. This is in distinction to
expressions in the literature which are limited to isotropic constituents for multi-constituent composites
(Hashin and Shtrikman, 1963) and to cubic (Hashin and Shtrikman, 1962¢) and hexagonal, trigonal and
tetragonal (Watt and Peselnick, 1980) single crystal symmetries for polycrystals.

It is of interest to note that under certain circumstances equivalence may be found between the Mori—
Tanaka effective property predictions (Mori and Tanaka, 1973; Benveniste, 1987) and the Hashin-
Shtrikman bounds. When a bi-constituent composite in the form of an isotropic matrix reinforced with
anisotropic, spherical fibers which have a uniform ODF, and the matrix material constitution, in addi-
tion to being isotropic, is an optimal zeroth-order bound of the composite, then the Mori-Tanaka pre-
diction corresponds to one of the two Hashin-Shtrikman bounds. In particular, if C™ = C°' then the



7956 J.C. Nadeau, M. Ferrari | International Journal of Solids and Structures 38 (2001) 7945-7965

Mori-Tanaka approximation is equivalent to the Hashin—Shtrikman upper bound and if C™ = C°~ then
the Mori-Tanaka approximation is equivalent to the Hashin—Shtrikman lower bound. This correspondence
has been previously observed for two-phase (Weng, 1984) and multi-phase (Norris, 1989) composites with
isotropic constituents and for the general case of multi-constituent composites with anisotropic constituents
(Weng, 1990).

7. Bounds on a graphite—uranium dioxide composite

In this section, utilizing the developments presented above, bounds corresponding ton =0, 1, 2 and oo
are presented for the elastic bulk k and shear ¢ moduli for a macroscopically isotropic graphite—uranium
dioxide (C-UQO;) composite. Of particular interest in this example is the calculation of the Hashin—
Shtrikman bounds for the composite because each of the individual constituents are anisotropic. The
Hashin—Shtrikman bound calculation (as well as higher order bound calculations) is made possible due to
the previous developments in Sections 5 and 6. This composite is used in nuclear reactor fuel rods and it
is assumed that all crystals are randomly oriented.

Single crystal graphite has hexagonal symmetry and its five independent elastic moduli (Kelly, 1981,
Table 3.2, p. 74) are presented in Table 1. Single crystal uranium dioxide has cubic symmetry and its three
independent elastic moduli (Simmons and Wang, 1971, code = 12076) are presented in Table 2. Bounds on
the bulk x and shear y moduli of polycrystalline graphite and uranium dioxide are tabulated in Table 3.
This table was compiled by first evaluating the optimal zeroth-order bounds utilizing Section 5, then using
the results of Section 6 to compute the bounds corresponding to n = 2,4,6, ..., 00. Second, the first-order
Voigt/Reuss bounds were evaluated and then the relations of Section 6 could be used again to compute the
bounds corresponding to n = 3,5,7,..., 0.

The bounds for a macroscopically isotropic graphite—uranium dioxide composite are now presented.
Plots of the results are in the form of modulus versus volume fraction « of uranium dioxide. The bounds on
the bulk modulus are presented in Fig. 1 while the bounds on the shear modulus are presented in Fig. 2.

Table 1

Single crystal elastic moduli for graphite
Component Modulus (GPa)
Chn 1060
Cin 180
Ciiss 15
Gy 36.5

Table 2

Single crystal elastic moduli for uranium dioxide (UO,)
Component Modulus (GPa)
Cin 396.0
Ciin 121.0

Cinn 64.1
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Table 3
Bounds on the bulk x and shear ;¢ moduli of graphite and uranium dioxide
Graphite (GPa) Uranium dioxide (GPa)

K0+ 512.59 212.67

K 286.28 212.67

K 204.17 212.67

K> 89.04 212.67

K 42.63 212.67

K- 35.76 212.67

K0~ 30.25 212.67

ur 440.00 137.50

ut 219.57 93.46

[12* 149.27 88.28

[l 54.09 87.19

1 16.34 86.44

u 10.26 81.50

u- 4.50 64.10

BULK MODULUS (GPa)

600

500

400

300

BOUNDS on a GRAPHITE-URANIUM DIOXIDE COMPOSITE

200F

-— - 0-th Order Bounds
—— 1-st Order Bounds
— —  2-nd Order Bounds
----- Infinity Order Bounds

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
VOLUME FRACTION of URANIUM DIOXIDE

Fig. 1. Graphite-uranium dioxide composite: bulk modulus bounds.
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BOUNDS on a GRAPHITE-URANIUM DIOXIDE COMPOSITE
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400 g

350 -=-=  0-th Order Bounds 1
—— 1-st Order Bounds

300} - — - 2-nd Order Bounds ]
------ Infinity Order Bounds

250 B

200

SHEAR MODULUS (GPa)

150

100

50F

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
VOLUME FRACTION of URANIUM DIOXIDE

Fig. 2. Graphite-uranium dioxide composite: shear modulus bounds.

These results were achieved by first determining the optimal zeroth-order and first-order bounds for each
constituent. These results can be found in Table 3. Once the bounds (n = 0, 1) are known for each con-
stituent it is possible to evaluate the zeroth- and first-order bounds of the composite. The zeroth-order
bounds of the composite are evaluated using Egs. (59) and (60). In the case of the first-order composite
bounds it is necessary to know the volume fraction of the uranium dioxide. Once these “seeds’ — which are
the zeroth- and first-order bounds of the composite — are determined, the results of Section 6 are employed
to evaluate all of the higher order bounds (» > 2). In Figs. 1 and 2 the bounds corresponding ton =0, 1, 2
and oo are presented. The upper and lower infinity-order bounds, which are equivalent to the self-consistent
approximation (Kroner, 1977), are coincident, thus, for example, we may define k™ := k™ = k™",

Of most practical importance in this example is the evaluation of the Hashin—Shtrikman bounds for a
composite with anisotropic constituents. Of less practical importance is the evaluation of the zeroth-order
bounds, but as has been previously stated, evaluation of the zeroth-order bounds permits easy evaluation of
higher even-order bounds such as the Hashin—Shtrikman bounds.

In performing the tensorial operations necessary to evaluate the zeroth-order bounds, and in imple-
menting the recursive relations of Section 6, it is tremendously helpful to employ the tensor-to-matrix
mappings of Nadeau and Ferrari (1998). Through the use of these mappings it is possible to transform the
tensorial operations to equivalent standard matrix operations. The calculations for this example were ac-
complished using the matrix manipulation package, MATLAB.
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8. Material anisotropy parameters

An application of zeroth-order bounds is the characterization, or quantification, of material property
anisotropy. In this section we present parameters which characterize the anisotropy of generally anisotropic
second- and fourth-order properties. This section concludes with two examples: calculation of the an-
isotropy parameters for (i) the nearly isotropic cubic crystal of tungsten (W) and (ii) one of the most an-
isotropic materials known — graphite.

8.1. Second-order tensors

A second-order tensor t € 7 é defines a surface: x - tx = 1 where x € 7. For example, if ¢ is positive
definite, then x - tx = 1 defines an ellipsoid. With respect to a particular basis the tensor ¢ has components:

i 00
k=10 4 0], (73)
0 0 Js

where 1;, 4, and A; are the eigenvalues of #. The semi-major axes of the ellipsoidal surface are \/1//,
\/ 1//12 and \/ 1//13

From the above discussion, and the results of Section 4, it follows that the optimal zeroth-order upper
bound to ¢ is the smallest sphere, centered at the origin, which can be circumscribed to the surface of the
ellipsoid. Similarly, the optimal zeroth-order lower bound to ¢ is the /argest sphere, centered at the origin,
which can be inscribed to the surface of the ellipsoid. In what follows we introduce a scalar parameter which
quantifies the relative size of the two bounding spheres. This parameter is a measure of the anisotropy of
the tensor 7.

Since our application is to physical material properties we now restrict attention to positive definite
tensors k. Let k" = k%" i and k°~ = k° i denote the zeroth-order upper and lower bounds to k. The an-
isotropy parameter for k is defined as

k0+ _ kO—
The positive definiteness of k implies that « is bounded:
0<a< L. (75)

The tensor k is isotropic if the circumscribed and inscribed spheres have the same radius, say k, since
then k;; = kd,;; which is isotropic. Thus, the closer « tends to zero the more isotropic the constitutive relation
k while the closer o tends to one the more anisotropic.

8.2. Fourth-order tensors

In analogy with the anisotropy parameter for ¢t € 7 é, the optimal zeroth-order bounds for a tensor
T € 7¢ contain information regarding the extent of anisotropy of 7. That is, the relative sizes of the two
bounding isotropic tensors are a measure of the anisotropy of the tensor 7.

Since our motivation is the quantification of anisotropy of elastic material properties we now take
T = C € J ¢. Let the optimal zeroth-order upper and lower bounds to C, respectively take the forms

C = 3P 4 20t Vs (76)

C' = 3" P 4 20 s, (77)
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The anisotropy of C is quantified by the following two parameters:

i (78)

— S
o = , ot 1=
0
o+

For a general fourth-order tensor a third parameter could be defined but because the elastic modulus C is
an element of 7 ¢ it follows that C* = 0 and thus the third anisotropy parameter, which would be defined
as o := (n°* — n°)/n°*, would always be equal to zero. The positive definiteness of C implies that both o*
and o are bounded:

0<a <1, 0<a < 1. (79)

An anisotropy parameter tending to zero is an indication of isotropy while an anisotropy parameter tending
to one is an indication of anisotropy.

An elastic tensor C is isotropic if and only if (o, o) e = (0,0). A cubic material, on the other hand,
is isotropic with respect to the bulk property (i.e., @ = 0) but exhibits anisotropy in the shear property. In

: : K alt _ n
other words, for a cubic material (o, ") ;.. = (0, a%).

8.3. Historical elastic anisotropy parameter

Characterization of the anisotropy of cubic materials has been noted in the literature. Depending on the
particular application, characterization has been quantified by a number of parameters. Here are three such
parameters:

2Cs33
o == 80
' Cin - Ciz (80)
Ciunn—Cun 1
_ _ L 81
» 2Ch33 o’ ( )
- Cinn — Cin — 2C2323' (82)

Cllll

The ratio of elastic constants on the RHS of the definition for o has been referred to as Zener’s anisotropy
factor (Zener, 1948, p. 16). Note that a; > 0, o, > 0 and o3 is unbounded. The conditions: a; =1, a, = 1
and o3 = 0, imply isotropy. Also note that a material with a; = & is just as anisotropic (or isotropic, de-
pending how you wish to view it) as a material with o, = 1/a. Likewise, o, = & and o, = 1/& are equivalent
measures of anisotropy. a3 = & and o3 = —a are also equivalent measures of anisotropy. In short, these
quantities are not convenient parameters for comparison of cubic materials due to their non-uniqueness.
The parameters introduced in this section, in addition to being applicable to arbitrary material symmetry,
are unique.

8.4. Example: single crystal tungsten (W)

Single crystal tungsten (W) has cubic symmetry. As a result, tungsten’s thermal conductivity is an iso-
tropic tensor which leads to a thermal conductivity anisotropy parameter of zero: tungsten = 0.

Tungsten’s three independent elastic moduli (Simmons and Wang, 1971, code = 12020) are presented in
Table 4. Utilizing the results of the Section 5.3, the optimal zeroth-order bounds were calculated and they
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Table 4
Single crystal elastic moduli for tungsten (W)
Component Modulus (GPa)
Cin 512.57
Cun 205.82
Casns 152.67
Table 5
Optimal zeroth-order bounds to the elastic properties of tungsten (W)
K% (GPa) K~ (GPa) u** (GPa) u’~ (GPa)
308.07 308.07 153.38 152.67
Table 6
Single crystal thermal conductivity moduli for graphite
Component Modulus (W/(m K))
ki 6.87
k33 1840

are presented in Table 5. The anisotropy parameters for tungsten are (o, o) poqen = (0.0000,0.004629).
Single crystal tungsten is, therefore, a nearly isotropic material in elastic behavior.
Since tungsten is a cubic material the historical anisotropy parameters of Section 8 were evaluated:

(1) angsien = 0-9954, (202) = 1.0047 and (a3) =0.002751.

tungsten tungsten

8.5. Example: single crystal graphite

Single crystal graphite is transversely isotropic. Graphite’s two independent thermal conductivity moduli
(Null et al., 1973, Table 3) are presented in Table 6. The optimal zeroth-order bounds are thus %+ = 1840
W/(m K) and £~ = 6.87 W/(m K) which results in an anisotropy parameter of (“k)graphne = 0.996.

The zeroth-order bounds on the elastic moduli of graphite were calculated in Section 7 and they were
presented in Table 3. The anisotropy parameters of graphite are (o, o) e = (0.941,0.990).

These parameters quantify — and would appear to confirm — the belief that graphite is one of the most
anisotropic materials known. Other highly anisotropic materials include, for example, GaS ((«, 0")g,s =
(0.669,0.737)) and GaSe ((a*, a*)g,s. = (0.660,0.733)).

9. Closure

Optimal zeroth-order bounds have been defined for all even ordered tensors. It has been proven that all
optimal zeroth-order bounds are isotropic tensors. Additional properties of optimal zeroth-order bounds
have also been proven. In regards to evaluation of the optimal bounds, this paper has presented a method
for calculating optimal zeroth-order bounds of all second- and fourth-order tensors. As a result of this
capability it is possible to evaluate the Hashin—Shtrikman bounds for all macroscopically homogeneous
and isotropic composites regardless of the material symmetry of the constituents. In addition, material
anisotropy parameters have been defined to quantify the extent of a material’s anisotropy.
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Appendix A. Some properties of, and pertaining to optimal bounds

Theorem 1. The optimal zeroth-order bounds T°", T~ € T3, to a tensor T € T3, are isotropic.
Proof. In regards to the upper bound, choose 4 = T°" in Egs. (20) and (21) to arrive at

x- (T —TL[T"])) - x<0 VYx€J" and Vg€ 0" (A.1)
and

x- ([T - T°) - x<0 Vx€J" and Vg€ 0" (A.2)

respectively. Multiplying Eq. (A.2) through by —1 and combining the result with Eq. (A.1l) results in the
conclusion that

x- (T —IL[T"))-x=0 VYxcJ" and Vg O" (A.3)
from which it follows that
T =11,[T""] VYqe o' (A.4)

Since T°" € 7" is an even-ordered tensor it follows that Eq. (A.6) is also valid Vg € @ thus T° is iso-
tropic. Analogous reasoning leads to the conclusion that T° is also an isotropic tensor. [J

Theorem 2. For T, T*" € 7 é”, T being the optimal zeroth-order upper bound to T, the largest eigenvalue of
the difference T — T°" is zero.

Proof. For i € {1,2,...,3"} let (4;,v;), where 4, € R and v; € 7", denote the 3" eigenvalue—eigentensor
pairs of the difference T — T°". In other words,

[T—T% — /1] v =0. (A.S)

Let Amax := max; 4. By definition of T° it is known that the difference in question is negative semi-definite.
Thus all 3" eigenvalues 4, are less than or equal to zero; or, equivalently, Ay« < 0. We are thus proving that
Amax = 0.

Toward a contradiction assume that A,,, = —e < 0 and let

A=T" —leI (A.6)

where I € 7 é” is the identity tensor. Note that A4 is isotropic and thus I, [4] = 4 Vq € O.

We first show that A4 is a zeroth-order upper bound to T. We next show that A4 is a better upper bound to
T than T°", which is in contradiction to the definition of T°", therefore Ay. = 0. It being previously de-
termined that /. <O it follows then that A,,, = 0.

To prove that A4 is a zeroth-order upper bound to T we show that all the eigenvalues of the difference,
T — A, are less than or equal to zero. The eigenproblem to be considered is

0=[T—-A4- /1] (A7)

0=[T T (L - %e) 17, (A.8)
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The eigenpairs are (/”_L,- —%e, ;) = (4, v;). Thus, Ji= A —l—%e and, taking the max of both sides, Amax =

Amax +3€ = —€+31e=—1e < 0. Therefore, 4 is a zeroth-order upper bound to 7.
To prove that A4 is a better zeroth-order upper bound to T then T°" we show that T°" — A4 is positive
semi-definite. Substituting Eq. (A.6) into Eq. (19) yields

x (T —4) x=lx x>0 vxez". O (A.9)

Theorem 3. For T, T ¢ 7 é”, T~ being the optimal zeroth-order lower bound to T, the smallest eigenvalue of
the difference T — T’ is zero.

The proof follows that of Theorem 2. [J

Theorem 4. For A € T3, the expression

x-A-x<(=)0 Vxeg™ (A.10)
holds iff

x A x< (=)0 YxeTy (A.11)
and

x-Ax< (=)0 YxeTr (A.12)
Proof. First, perform additive decompositions of 4 € §” and x € 7

A=A4"+ A" (A.13)

x=x"+x" (A.14)
Substituting these decompositions into Eq. (A.10) yields

x:A:x= 5 +x1): (4 + 4% (X +x") (A.15)

x:A:x=x:4:x+x': 47 X" (A.16)

Sufficiency: Obviously, if Egs. (A.11) and (A.12) hold then from Eq. (A.16) it follows that Eq. (A.10)
also holds.

Necessity: Since Eq. (A.10) is valid Vx € 7, it follows that taking x* = 0 gives Eq. (A.11) and taking
x5 =0 gives Eq. (A.12). O

Theorem 5. For A € T é with a spherical eigentensor, the expression

x:A:x< (=)0 VYxeT? (A.17)
holds iff

XA < (=)0 Vxe T (A.18)

XA xL (=)0 Ve T (A.19)

Proof. First, perform a spherical-deviatoric decomposition of x € .7* and substitute into Eq. (A.17) to yield

x:A:x= (x4 %) A (7 4 x ) (A.20)

x:A:x=x" A x4 x4 x4 x4 X x4 (A.21)
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x:A:x=x":A:x"" x4 x* (A.22)

Eq. (A.22) follows from Eq. (A.21) because A : x7* = x?* : 4 oc x*”" and x**" : x4 = 0.

Sufficiency: Obviously, if Egs. (A.18) and (A.19) hold then from Eq. (A.22) it follows that Eq. (A.17)
also holds.

Necessity: Since Eq. (A.17) is valid Vx € .77, it follows that taking x** = 0 gives Eq. (A.18) and taking
x?* = 0 gives Eq. (A.19). O

Theorem 6. For A,B ¢ 7"
x-(A—B) -x<0 VxeJ"=trd<trB. (A.23)

Proof. Recall that the trace of a tensor T € 7" is an invariant. We now prove this theorem for the case
n = 2; the other cases follow in a similar manner. Evaluating the LHS of the implication (A.23) for the
following choices of [x]

1 007010 00 0
00 0[, [0 00[,....]0 0 o0f, (A.24)
00 0] (000 00 1

leads, respectively, to the following component inequalities:

Aun < B, Apn < B, -, 43333 < Bisss. (A.25)
Summing components yields

Aun + A+ -+ 43333 < B + B + -+ B (A.26)
which is equivalent to tr 4 < tr B. The proofs for n = 1,3,4,5,..., proceed in a similar manner. [J

Note: It can not be concluded from Theorem 6 that 4;,_;, <B;, ;. For example, for the case n = 1, only the
following three inequalities can be deduced: A < Byy, 42 < By, and 433 < Bs;. Nothing can be determined
about the relations amongst the off-diagonal terms.
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